PISA: A Measure of Preference in Selection of

Arguments to Model Verb Argument Recoverability

Giulia Cappelli¹, Alessandro Lenci²

¹ Scuola Normale Superiore
 ² University of Pisa

*SEM 2020

The 9th Joint Conference on Lexical and Computational Semantics December 12-13, 2020 online

Table of contents

1. Introduction

- 1.1 Goal of the study
- 1.2 Semantic recoverability
- 1.3 Related work
- 2. PISA
 - 2.1 The basic idea
 - 2.2 The measure
 - 2.3 Weighted models and sorted models
- 3. Experiment
 - 3.1 Datasets
 - 3.2 Extraction
 - 3.3 Embeddings
- 4. Results
 - 4.1 Resnik's SPS
 - 4.2 PISA
- 5. Conclusions
- 6. Appendix

Introduction

Cappelli & Lenci

Introduction

Goal of the study

Semantic recoverability

PISA

The basic ide

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embeddin

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

Goal of the study

A fully distributional model of the semantic recoverability of verb arguments, to improve on taxonomy-based models¹

¹Resnik 1993, 1996

Introduction

Goal of the study

Semantic recoverability

Related work

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embeddings

Results

Resnik's S

PISA

Conclusions

References

Appendix

What kind of verb arguments are we interested in?

The verb-argument relation can be

The verb-argument relation

- a grammatical function, such as "subject" or "direct object"²
- a semantic role, such as "Instrument" or "Patient"

The choice between the two depends on computational requirements rather than on theoretical constraints.

²Resnik 1993, 1996.

Cappelli & Lenci

Semantic recoverability (1) John ate Ø_{object}.

Recoverability of direct objects (arguments)

Introduction

Goal of the study

Semantic recoverability

(1)

Related work

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

recoverable object: belongs to the category of Edibles

(grammatical sentence)

John ate Ø_{object}.

Recoverability of direct objects (arguments)

Introduction

Goal of the study

Semantic recoverability

Related work

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embeddings

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

(1) John ate \emptyset_{object} .

recoverable object: belongs to the category of Edibles (grammatical sentence)

Recoverability of direct objects (arguments)

(2) *John made \emptyset_{object} .

Introduction

Goal of the study

Semantic recoverability

(1) John ate \emptyset_{object} .

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embeddings

Results

Resnik's SP

PISA

Conclusions

References

Appendix

recoverable object: belongs to the category of Edibles (grammatical sentence)

Recoverability of direct objects (arguments)

(2) *John made $\emptyset_{\text{object}}$.

non-recoverable object: basically anything can be made! (ungrammatical sentence)

PISA: argument recoverability

Cappelli & Lenci

Semantic
recoverability
Related work
PISA
The basic idea
The measure
Weighted models and sorted models
Experiment
Extraction
Results

Recoverability of Instruments³ (adjuncts)

(3) John **beheaded** the prisoner $\emptyset_{\text{Instrument}}$.

³Koenig, Mauner, and Bienvenue 2002, 2003; Koenig, Mauner, Bienvenue, and Conklin 2007.

Cappelli & Lenci

Introduction

Goal of the study

Semantic recoverability

Related work

PISA

The basic ide

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

(3) John beheaded the prisoner $\emptyset_{\text{Instrument}}$.

Recoverability of Instruments³ (adjuncts)

recoverable Instrument: a heavy-bladed tool, possibly a sword (Require-Instrument verb)

³Koenig, Mauner, and Bienvenue 2002, 2003; Koenig, Mauner, Bienvenue, and Conklin 2007.

Introduction

Goal of the study

Semantic recoverability

Related work

PISA

The basic idea

The measure

Weighted models and sorted models

(4)

Experiment

Datasets

Extraction

Embeddings

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

(3) John beheaded the prisoner $\emptyset_{\text{Instrument}}$.

Recoverability of Instruments³ (adjuncts)

recoverable Instrument: a heavy-bladed tool, possibly a sword (Require-Instrument verb)

John killed the prisoner $\emptyset_{\text{Instrument}}$.

³Koenig, Mauner, and Bienvenue 2002, 2003; Koenig, Mauner, Bienvenue, and Conklin 2007.

Introduction

Goal of the study

(3)

Semantic recoverability

Related work

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Empedding

Results

Resnik's SP

PISA

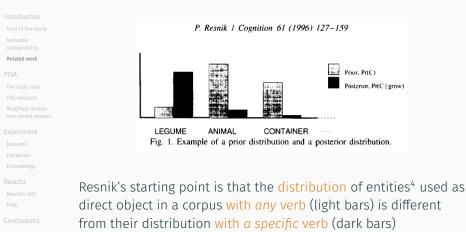
Conclusions

References

Appendix

John **beheaded** the prisoner $\varnothing_{Instrument}$.

Recoverability of Instruments³ (adjuncts)


recoverable Instrument: a heavy-bladed tool, possibly a sword (Require-Instrument verb)

(4) John killed the prisoner $\emptyset_{\text{Instrument}}$.

non-recoverable Instrument: a weapon? poison? bare hands? (Allow-Instrument verb)

³Koenig, Mauner, and Bienvenue 2002, 2003; Koenig, Mauner, Bienvenue, and Conklin 2007.

Resnik's taxonomy-based measure⁵

⁴belonging to ontological classes, specifically WordNet synsets ⁵Resnik 1993, 1996.

Introduction

Goal of the stud

Semantic recoverability

Related work

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embeddings

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

Resnik's Selectional Preference Strength (SPS) of a verb with respect to the possible fillers in the given relation⁶ is the Kullback-Leibler divergence (relative entropy) between:

Resnik's Selectional Preference Strength

- the (posterior) distribution of WordNet synsets for the given verb-relation pair
- the (prior) distribution of synsets participating in the given relation over all verbs in the corpus

$$SPS_{v,r} = \sum_{c \in classes} p(c|v,r) \log \frac{p(c|v,r)}{p(c|r)}$$
(1)

⁶which can be used as a measure of argument recoverability

Introduction

Goal of the stud

Semantic recoverability

Related work

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's S

PISA

Conclusions

References

Appendix

From the SPS measure, Resnik derives the Selectional Association (SA) of a verb with a specific argument participating in a given relation, i.e. the highest SA among those computed for each class the argument belongs to.

Resnik's Selectional Association

$$SA_{v,r,c} = \frac{p(c|v,r) \log \frac{p(c|v,r)}{p(c|r)}}{SPS_{v,r}}$$
(2)

Resnik's work inspired more taxonomy-based models of the SA over the years⁷, but no further refinements of the SPS itself.

⁷Grishman and Sterling 1992; Abe and Li 1996; Ciaramita and Johnson 2000; Clark and Weir 2001; Alishahi and Stevenson 2007; U. Padó, Crocker, and Keller 2009.

Cappelli & Lenci

Introduction	Taxonomy-ba
Goal of the study	
Semantic recoverability	
Related work	
PISA	
The basic idea	
The measure	
Weighted models and sorted models	
Experiment	
Extraction	
Results	
Resnik's SPS	
PISA	
Conclusions	
References	0

Appendix

⁸Erk 2007; Erk, S. Padó, and U. Padó 2010. ⁹Lenci 2018.

Taxonomy-based models need a manually-built lexicon

Distributional Semantic Models (DSMs)⁹

Cappelli & Lenci

Introduction Goal of the study Semantic recoverability

Related work

PISA

The basic ide

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

Distributional Semantic Models (DSMs)⁹

Taxonomy-based models need a manually-built lexicon

DSMs don't! Several distributional versions of the SA (Pereira, Tishby, and Lee 1993; Erk 2007; Bergsma, Lin, and Goebel 2008; Schulte im Walde et al. 2008; Erk, S. Padó, and U. Padó 2010)

⁸Erk 2007; Erk, S. Padó, and U. Padó 2010. ⁹Lenci 2018.

Cappelli & Lenci

Introduction Goal of the study Semantic recoverability

Related work

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding:

Results

Resnik's SP

PISA

Conclusions

References

Appendix

Distributional Semantic Models (DSMs)⁹

Taxonomy-based models need a manually-built lexicon

DSMs don't! Several distributional versions of the SA (Pereira, Tishby, and Lee 1993; Erk 2007; Bergsma, Lin, and Goebel 2008; Schulte im Walde et al. 2008; Erk, S. Padó, and U. Padó 2010)

PISA is inspired by Erk's work⁸, where the SA of a verb and a given argument in a given relation is the weighted similarity between that argument and all the other arguments of the same verb-relation pair.

$$SA_{v,r}(a_0) = \sum_{a \in args(v,r)} wt_{v,r}(a) sim(a_0,a)$$
(3)

⁸Erk 2007; Erk, S. Padó, and U. Padó 2010. ⁹Lenci 2018.

PISA

The basic idea

Cappelli & Lenci

ntroduction Goal of the study Semantic recoverability

DICA

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

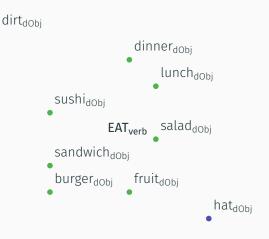
Datasets

Extraction

Embedding

Results

Resnik's SPS


PISA

Conclusions

References

Appendix

the dObjs of to eat are close together in a vector space

The basic idea

Appendix

the dObjs of to make are very sparse in a vector space

Introduction

Goal of the stud

Semantic

recoverabili

Related wo

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

Intuition: the vector-based SPS of a given verbrelation pair should be positively correlated with the semantic density of their arguments

PISA: a model of Preference In Selection of Arguments

Introduction

Goal of the stud

Semantic

.

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embeddings

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

Intuition: the vector-based SPS of a given verbrelation pair should be positively correlated with the semantic density of their arguments

PISA: a model of Preference In Selection of Arguments

Goal: modeling argument recoverability in the spirit of Resnik's SPS, building on Erk's technique

- Introduction
- Goal of the stud
- Semantic
- Delete d......
- PISA
- The basic idea
- The measure
- Weighted models and sorted models
- Experiment
- Datasets
- Extraction
- Embedding
- Results
- Resnik's SPS
- PISA
- Conclusions
- References
- Appendix

Intuition: the vector-based SPS of a given verbrelation pair should be positively correlated with the semantic density of their arguments

PISA: a model of Preference In Selection of Arguments

Goal: modeling argument recoverability in the spirit of Resnik's SPS, building on Erk's technique

Implementation: computing the semantic density of the verb-relation pair as the mean pairwise cosine similarity between the arguments of the pair

The measure

Cappelli & Lenci

Introduction

Goal of the s

recoverabilit

Related work

PISA

The basic ide

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

As in previous literature, relations in our model may be syntactic ones or semantic roles, depending on their availability in a corpus. We used only one similarity measure, cosine.

We average Erk's SA (in 4) over the *n* arguments of a given verb-relation pair to compute PISA (in 5):

$$SA_{v,r}(a_0) = \sum_{a \in args(v,r)} wt_{v,r}(a) sim(a_0,a)$$
(4)

$$PISA_{v,r} = \frac{1}{n} \sum_{i=1}^{n} SA_{v,r}(a_i)$$
(5)

13

Cappelli & Lenci

ntroduction Goal of the study Semantic recoverability

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

Some arguments are more associated with a given verb-relation pair than others (e.g. *hamburger* is a more typical dObj of *to eat* than *topinambur*) \longrightarrow they get different weights¹⁰

¹⁰Erk 2007; Erk, S. Padó, and U. Padó 2010.

Weighted models

Cappelli & Lenci

Introduction Goal of the stud Semantic

Polatod work

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusion

References

Appendix

Some arguments are more associated with a given verb-relation pair than others (e.g. *hamburger* is a more typical dObj of *to eat* than *topinambur*) \longrightarrow they get different weights¹⁰

- UNI assumes a uniform distribution: $wt_{v,r}(a) = 1$
- FRQ is the co-occurrence frequency of a given argument with the verb-relation pair: $wt_{v,r}(a) = freq(a, v, r)$
- IDF assigns higher scores to arguments occurring with fewer verb-relation pairs: $wt_{v,r}(a) = \log \frac{|v,r|}{|v,r:a \in v,r|}$

• LMI is the Local Mutual Information of the argument and a given verb-relation pair: $wt_{v,r}(a) = f(a, v, r) \log_2 \frac{p(a, v, r)}{p(a)p(v, r)}$

• ENT is the entropy of the argument of a given verb-relation pair: $wt_{v,r}(a) = -\sum_{a \in args(v,r)} p(a) \log_2 p(a)$

¹⁰Erk 2007; Erk, S. Padó, and U. Padó 2010.

Weighted models

Unweighted models

Cappelli & Lenci

Introduction

Goal of the stud

Semantic

recoverabili

Related work

PISA

The basic ide

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

Unweighted models

 \mathcal{Q}

Cappelli & Lenci

ntroduction

Goal of the stu

Somantic

recoverabili

Related wo

PISA

The basic idea

The measure

Weighted models and sorted models

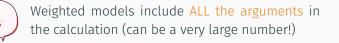
Experiment

Datasets

Extraction

Embedding

Results


Resnik's SPS

PISA

Conclusions

References

Appendix

Is it possible to obtain relevant information considering the most relevant *k* arguments only?

Cappelli & Lenci

ntroduction

Goal of the stud

Somantic

recoverabili

Related wo

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

 \mathcal{Q}

Weighted models include ALL the arguments in the calculation (can be a very large number!)

Is it possible to obtain relevant information considering the most relevant *k* arguments only?

We created unweighted models

Unweighted models

- with only the top/bottom *k* argument nouns for each verb-relation pair (300 dObjs, 20 Instruments)
- arguments are sorted based on the FRQ, IDF, LMI and ENT weighting functions

Experiment

Datasets

Cappelli & Lenci

Introduction

Goal of the stud

Semantic

recoverability

PISA

The basic id

The measure

Weighted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

99 transitive verbs (50 recoverable dObj+ 49 non-recov dObj)34 from Resnik 1993, 35 from Levin 1993, 30 high-frequency verbs

Datasets

Cappelli & Lenci

- Introduction
- Goal of the study
- Semantic
- Delete doued
- DISA
- PISA
- The basic ide
- The measure
- Weighted models and sorted models
- Experiment

Datasets

- Extraction
- Embedding
- Results
- Resnik's SPS
- PISA
- Conclusions
- References
- Appendix

- 99 transitive verbs (50 recoverable dObj+ 49 non-recov dObj)34 from Resnik 1993, 35 from Levin 1993, 30 high-frequency verbs
- 173 Instrument verbs (116 recoverable Instr + 57 non-recov Instr) taken from Koenig, Mauner, Bienvenue, and Conklin 2007

Datasets

Cappelli & Lenci

- Introduction
- Goal of the study
- Semantic recoverability
- Dolated work
- PISA
- The basic i
- The measure
- Weighted models and sorted models
- Experiment

Datasets

- Extraction
- Embeddings
- Results
- Resnik's SPS
- PISA
- Conclusions
- References
- Appendix

99 transitive verbs (50 recoverable dObj+ 49 non-recov dObj)34 from Resnik 1993, 35 from Levin 1993, 30 high-frequency verbs

173 Instrument verbs (116 recoverable Instr + 57 non-recov Instr) taken from Koenig, Mauner, Bienvenue, and Conklin 2007

The datasets and the scripts we used to run our model are freely available here on GitHub (courtesy of Ludovica Pannitto)

Extraction of verb arguments

Introduction

- Goal of the study
- Semantic
- recoverability
- Related wor

PISA

- The basic idea
- The measure
- Weighted models and sorted models

(5)

- Experiment
- Datasets
- Extraction
- Embeddings
- Results
- Resnik's SPS
- PISA
- Conclusions
- References
- Appendix

Arguments of verbs extracted from ukWaC¹¹, a 2-billion token part-of-speech tagged and lemmatized corpus of English

extraction of head nouns without determiners and modifiers:

a. a big rusty swordb. sword

Instruments = PPs headed by with, Artifact as a noun argument¹²

¹¹Ferraresi et al. 2008.
 ¹²As defined in WordNet 3.0 (Miller 1995)

Word embeddings

Cappelli & Lenci

ntroduction Goal of the study Semantic

recoverability

PISA

The basic ide

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embeddings

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

300-dimensional embeddings trained on a concatenation of ukWaC and a 2018-dump of English Wikipedia

Both window-based and syntax-based contexts, different window sizes (2 or 10) for both SVD reduced count-based DSMs and neural embeddings created via word2vec

SVD	w2v	w2vf
synt.c1000	CBOW.w10	SGNS.synt.c1000
synt.c500	CBOW.w2	SGNS.synt.c500
w10	SGNS.w10	SGNS.w10
w2	SGNS.w2	SGNS.w2

Table 1: Tested embedding types (w2v = word2vec; w2vf = word2vecf).

Results

Cappelli & Lenci

ntroduction

Goal of the stud

Company's

recoverabili

Related worl

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embeddin

Results

Resnik's SPS

PISA

Conclusion

References

Appendix

Results: Resnik's SPS

Resnik's SPS scores higher for recoverableargument verbs than for non-recoverable argument verbs?

els dels		mean recov	mean non-recov
	dObj verbs	4.27	1.89
	Instr verbs	4.72	3.60
			stats
	dObj verbs	U = 264, n ₁ =	= 50, n ₂ = 49, P < .001
	Instr verbs	U = 4646, n ₁ =	= 116, n ₂ = 57, P < .001

19

Results: PISA

Full results available in the Appendix!

Cappelli & Lenci

Introduction

Goal of the stud

Semantic

Related wo

PISA

The basic ide

The measur

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

PISA can separate the two groups of recoverableand non-recoverable-argument verbs, based on significant Mann-Whitney U tests

Results: PISA

Cappelli & Lenci

Introduction Goal of the study

Semantic recoverabilit

Related wor

PISA

The basic id

The measur

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusion

References

Appendix

Full results available in the Appendix!

.

PISA can separate the two groups of recoverableand non-recoverable-argument verbs, based on significant Mann-Whitney U tests

weighted PISA: highly significant results sorted PISA: best with word2vec, FRQ/ENT weights PISA: distributional argument recoverability Cappelli & Lenci

Results: PISA

Full results available in the Appendix!

Semantic recoverabilit

Related wor

PISA

The basic ide

The measur

Weighted models and sorted models

Experiment

Datasets

Extraction

Embeddin

Results

Resnik's SI

PISA

Conclusion

Reference

Appendix

PISA can separate the two groups of recoverableand non-recoverable-argument verbs, based on significant Mann-Whitney U tests

weighted PISA: highly significant results sorted PISA: best with word2vec, FRQ/ENT weights

same significance pattern for Mann-Whitney U tests (to evaluate PISA) and Spearman correlations (to compare PISA and Resnik's SPS)

Conclusions

Conclusions

Cappelli & Lenci

Introduction

Goal of the stud

Semantic

recoverabili

Related w

PISA

The basic idea

The measure

Weighted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

PISA is as good as SPS but computationally cheaper (no WordNet required!)

Conclusions

Cappelli & Lenci

Introduction

Goal of the stud

Semantic

recoverabili

Related wo

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embeddings

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

 \mathcal{Q}

PISA is as good as SPS but computationally cheaper (no WordNet required!)

Which weight is the best? UNI is easier (no weight, no *k* value), ENT is more conservative wrt Resnik, sorted FRQ is best for very large sets of verbs

Conclusions

Cappelli & Lenci

- Introduction
- Goal of the stud
- Semantic
- recoverabilit
- Related wor
- PISA
- The basic idea
- The measure
- Weighted models and sorted models
- Experiment
- Datasets
- Extraction
- Embedding
- Results
- Resnik's SP
- PISA
- Conclusions
- References
- Appendix

PISA is as good as SPS but computationally cheaper (no WordNet required!)

Which weight is the best? UNI is easier (no weight, no *k* value), ENT is more conservative wrt Resnik, sorted FRQ is best for very large sets of verbs

 \mathcal{R}

future studies will predict the recoverability of arguments in other syntactic or semantic relations

Cappelli & Lenci

Introduction Goal of the stud Semantic recoverability

PISA

Weighted models and sorted models

Experiment

Extraction

PISA

References

Appendix

References

Grishman, Ralph and John Sterling (1992). "Acquisition of Selectional Patterns". In: COLING 1992 Volume 2: The 15th International Conference on Computational Linguistics. COLING 1992. URL: https://www.aclweb.org/anthology/C92-2099 (visited on 2020).

Levin, Beth (1993). English Verb Classes and Alternations: A Preliminary Investigation. Chicago: University of Chicago Press. 348 pp. ISBN: 978-0-226-47532-5 978-0-226-47533-2.

Pereira, Fernando, Naftali Tishby, and Lillian Lee (1993). "Distributional Clustering of English Words". In: Proceedings of the 31st Annual Meeting on Association for Computational Linguistics -. The 31st Annual Meeting. Columbus, Ohio: Association for Computational Linguistics, pp. 183–190. DOI: 10.3115/981574.981598. URL: http://portal.acm.org/citation.cfm?doid=981574.981598 (visited on 2020).

Resnik, Philip (1993). Selection and Information: A Class-Based Approach to Lexical Relationships. IRCS Technical Reports Series. University of Pennsylvania. 177 pp. URL: https://repository.upenn.edu/ircs_reports/200/.

Miller, George A. (Nov. 1995). "WordNet: A Lexical Database for English". In: Communications of the ACM 38.11, pp. 39–41. ISSN: 0001-0782. DOI: 10.1145/219717.219748.

Abe, Naoki and Hang Li (1996). "Learning Word Association Norms Using Tree Cut Pair Models". In: arXiv: cmp-lg/9605029. URL: http://arxiv.org/abs/cmp-lg/9605029 (visited on 2020).

Cappelli & Lenci

Introduction

Goal of the study Semantic recoverability Related work

PISA

The basic idea

Weighted models and sorted models

Extraction

Poculto

Rosnik's SP

PISA

Conclusions

References

Appendix

Resnik, Philip (1996). "Selectional Constraints: An Information-Theoretic Model and Its Computational Realization". In: Cognition 61.1-2, pp. 127–159. ISSN: 00100277. DOI: 10.1016/S0010-0277(96)00722-6. URL:

https://linkinghub.elsevier.com/retrieve/pii/S0010027796007226
(visited on 2020).

Ciaramita, Massimiliano and Mark Johnson (2000). "Explaining Away Ambiguity: Learning Verb Selectional Preference with Bayesian Networks". In: COLING 2000 Volume 1: The 18th International Conference on Computational Linguistics. COLING 2000. URL: https://www.aclweb.org/anthology/C00-1028 (visited on 2020).

Clark, Stephen and David Weir (2001). "Class-Based Probability Estimation Using a Semantic Hierarchy". In: Second Meeting of the North American Chapter of the Association for Computational Linguistics. NAACL 2001. URL:

https://www.aclweb.org/anthology/N01-1013 (visited on 2020).

Koenig, Jean-Pierre, Gail Mauner, and Breton Bienvenue (2002). "Class Specificity and the Lexical Encoding of Participant Information". In: Brain and Language 81.1-3, pp. 224–235. ISSN: 0093934X. DOI: 10.1006/brln.2001.2519. URL: https://linkinghub.elsevier.com/retrieve/pii/S0093934X01925192

https://linkinghub.elsevier.com/retrieve/pii/S0093934X01925192 visited on 2020).

(Sept. 2003). "Arguments for Adjuncts". en. In: Cognition 89.2, pp. 67–103. ISSN: 00100277. DOI: 10.1016/S0010-0277(03)00082-9.

Cappelli & Lenci

Introduction Goal of the study Semantic recoverability Related work

PISA

The basic idea

The measure

1

Experiment

Datasets

Extraction

mbeddings

Results

Conclusions

References

Appendix

Alishahi, Afra and Suzanne Stevenson (June 2007). "A Cognitive Model for the Representation and Acquisition of Verb Selectional Preferences". In: Proceedings of the Workshop on Cognitive Aspects of Computational Language Acquisition. Prague, Czech Republic: Association for Computational Linguistics, pp. 41–48. URL: https://www.aclweb.org/anthology/W07-0606.

Erk, Katrin (2007). "A Simple, Similarity-Based Model for Selectional Preferences". In: p. 8.

Koenig, Jean-Pierre, Gail Mauner, Breton Bienvenue, and Kathy Conklin (2007). "What with? The Anatomy of a (Proto)-Role". In: Journal of Semantics 25.2, pp. 175–220. ISSN: 0167-5133, 1477-4593. DOI: 10.1093/jos/ffm013. URL:

https://academic.oup.com/jos/article-lookup/doi/10.1093/jos/ffm013
(visited on 2020).

Bergsma, Shane, Dekang Lin, and Randy Goebel (2008). "Discriminative Learning of Selectional Preference from Unlabeled Text". In: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing. EMNLP 2008. Honolulu, Hawaii: Association for Computational Linguistics, pp. 59–68. DOI: 10.5555/1613715.1613725. URL: https://www.aclweb.org/anthology/D08-1007 (visited on 2020).

Ferraresi, Adriano et al. (2008). "Introducing and Evaluating Ukwac, a Very Large Web-Derived Corpus of English". In: In Proceedings of the 4th Web as Corpus Workshop (WAC-4.

Schulte im Walde, Sabine et al. (2008). "Combining EM Training and the MDL Principle for an Automatic Verb Classification Incorporating Selectional Preferences". In: Proceedings of ACL-08: HLT. ACL-HLT 2008. Columbus, Ohio: Association for Computational Linguistics, pp. 496–504. URL: https://www.aclweb.org/anthology/P08-1057 (visited on 2020).

Cappelli & Lenci

Related work

The basic ide

The measure

Weighted models and sorted models

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Appendix

Padó, Ulrike, Matthew W. Crocker, and Frank Keller (2009). "A Probabilistic Model of Semantic Plausibility in Sentence Processing". In: *Cognitive Science* 33.5, pp. 794–838. ISSN: 03640213. DOI: 10.1111/j.1551-6709.2009.01033.x. URL: http://doi.wilev.com/10.1111/j.1551-6709.2009.01033.x (visited on 2020).

Erk, Katrin, Sebastian Padó, and Ulrike Padó (2010). "A Flexible, Corpus-Driven Model of Regular and Inverse Selectional Preferences". In: Computational Linguistics 36.4, pp. 723–763. ISSN: 0891-2017, 1530-9312. DOI: 10.1162/coli_a_00017. URL: http://www.mitpressjournals.org/doi/10.1162/coli_a_00017 (visited on 2020).

Lenci, Alessandro (2018). "Distributional Models of Word Meaning". In: Annual Review of Linguistics 4, pp. 151–171.

Appendix

Appendix

Сар	pelli	&	Lenci
-----	-------	---	-------

UNI	SVD w2v w2vf SVD	weighted	top k - - - ** (***)	bot k - - -
	w2v w2vf SVD	*** ** (***)	- - ** (***)	
	w2vf SVD	** (***)	- - ** (***)	-
	w2vf SVD	(/	-	-
FRQ	SVD	(/	- ** (***)	-
FRQ		***	** (***)	10.0
FRQ	-		()	ns
	w2v	***	***	ns
	w2vf	***	** (***)	ns
	SVD	***	** (ns)	ns (***)
IDF	w2v	***		***
		++ (+++)		
	W2VT	^^ (^^^)	ns	ns
	SVD	*** (**)	** (ns)	ns (**)
LMI	w2v	***	* (ns)	*
	w2vf	*** (*)	* (ns)	* (**)
	SVD	*** (*)	ns (***)	ns
ENT	w2v	*** (**)	***	ns
	w2vf	*** (**)	* (ns)	*
	LMI	IDF w2v w2vf sVD LMI w2v w2vf w2vf SVD w2vf ENT w2v	IDF w2v *** w2vf ** (***) SVD *** (**) LMI w2v *** w2vf *** (*) SVD *** (*) ENT w2v *** (*)	IDF w2v *** *** (ns) w2vf *** (***) ns SVD *** (**) *** (ns) LMI w2v *** * (ns) w2vf **** (*) * (ns) SVD **** (*) * (ns) W2vf **** (*) * (ns) SVD **** (*) * (ns) ENT w2v *** (*) ***

Mann-Whitney U p-values (recov vs nonrecov verbs) Whenever transitive and Instrumentverb results are different, the former on the are left and the latter on the right of the same cell

Appendix

Cappelli & Lenci

Cappelli & Lenci			weighted	top300	bot300
Introduction		SVD	.832***	-	-
Goal of the study Semantic	UNI	w2v	.851***	-	-
recoverability		w2vf	.250*	_	_
Related work					
PISA		SVD	.854***	.341***	041 ns
The basic idea	FRQ	w2v	.835***	.712***	024 ns
The measure Weighted models		w2vf	.743***	368***	090 ns
and sorted models		SVD	.750***	328***	.211 ns
Experiment	IDF	w2v	.818***	388***	.457***
Datasets Extraction		w2vf	.256*	154 ns	.164 ns
		SVD	.791***	385***	092 ns
Results					
Resnik's SPS	LMI	w2v	.711***	135 ns	.129 ns
PISA		w2vf	.667***	092 ns	.091 ns
Conclusions		SVD	905***	.163 ns	.111 ns
References	ENT	w2v	908***	.579***	.134 ns
Appendix		w2vf	911***	.254*	.320**

Spearman correlations between PISA and Resnik scores for transitive verbs.

Appendix

Сар	pelli	&	Lenci
-----	-------	---	-------

Cappelli & Lenci			weighted	top20	bot20
Introduction		SVD	.404***	-	_
Goal of the study Semantic	UNI	w2v	.244***	-	_
Semantic recoverability	0	w2vf	.105 ns	_	_
Related work					
PISA		SVD	.283***	.481***	025 ns
The basic idea	FRQ	w2v	.179*	.519***	005 ns
The measure Weighted models		w2vf	.127 ns	.326***	.037 ns
and sorted models		SVD	.384***	.005 ns	.135 ns
Experiment Datasets	IDF	w2v	.242***	.09 ns	.265***
Extraction		w2vf	.082 ns	.176*	.03 ns
		SVD	.170*	.152*	011 ns
Results	LMI	w2v	.134 ns	.134 ns	065 ns
Resnik's SPS	LMT				
PISA		w2vf	.077 ns	.266***	013 ns
Conclusions		SVD	885***	.118 ns	.003 ns
References	ENT	w2v	920***	.256***	.088 ns
Appendix		w2vf	928***	.031 ns	.334***

Spearman correlations between PISA and Resnik scores for Instrument verbs.