PISA: A Measure of Preference in Selection of

Arguments to Model Verb Argument Recoverability

Giulia Cappelli¹, Alessandro Lenci²

¹ Scuola Normale Superiore ² University of Pisa

> CLiC-it 2020 The Seventh Italian Conference on Computational Linguistics March 1-3, 2021 Virtual Meeting

Table of contents

1. Introduction

- 1.1 Goal of the study
- 1.2 Semantic recoverability
- 1.3 Related work
- 2. PISA
 - 2.1 The basic idea
 - 2.2 The measure
 - 2.3 Weighted models and sorted models
- 3. Experiment
 - 3.1 Datasets
 - 3.2 Extraction
 - 3.3 Embeddings
- 4. Results
 - 4.1 Resnik's SPS
 - 4.2 PISA
- 5. Conclusions

Introduction

Cappelli & Lenci

Introduction

Goal of the study

Semantic recoverabilit

PISA

The basic ide

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Goal of the study

A fully distributional model of the semantic recoverability of verb arguments, to improve on taxonomy-based models¹

¹Resnik 1993, 1996

Introduction

Goal of the study

Semantic recoverability

Related work

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embeddings

Results

Resnik's S

PISA

Conclusions

References

The verb-argument relation

What kind of verb arguments are we interested in?

The verb-argument relation can be

- a grammatical function, such as "subject" or "direct object"²
- a semantic role, such as "Instrument" or "Patient"

The choice between the two depends on computational requirements rather than on theoretical constraints.

²Resnik 1993, 1996.

Semantic recoverability

(1) John ate Ø_{object}.

recoverable object: belongs to the category of Edibles (grammatical sentence)

Recoverability of direct objects (arguments)

(2)*John made Ø_{object}.

non-recoverable object: basically anything can be made! (ungrammatical sentence)

Introduction

Goal of the study

Semantic recoverability

Related work

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SP

PISA

Conclusions

References

(3) John **beheaded** the prisoner $\emptyset_{\text{Instrument}}$.

Recoverability of Instruments³ (adjuncts)

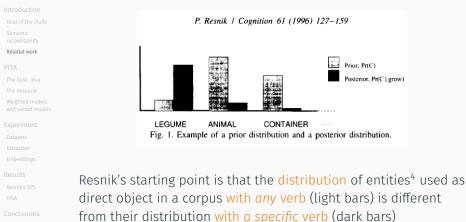
recoverable Instrument: a heavy-bladed tool, possibly a sword (Require-Instrument verb)

(4) John killed the prisoner $\emptyset_{\text{Instrument}}$.

non-recoverable Instrument: a weapon? poison? bare hands? (Allow-Instrument verb)

³Koenig, Mauner, and Bienvenue 2002, 2003; Koenig, Mauner, Bienvenue, and Conklin 2007.

Resnik's taxonomy-based measure⁵



⁴belonging to ontological classes, specifically WordNet synsets ⁵Resnik 1993, 1996.

Introduction

Goal of the stud

Semantic recoverability

Related work

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embeddings

Results

Resnik's SPS

PISA

Conclusions

References

Resnik's Selectional Preference Strength (SPS) of a verb with respect to the possible fillers in the given relation⁶ is the Kullback-Leibler divergence (relative entropy) between:

Resnik's Selectional Preference Strength

- the (posterior) distribution of WordNet synsets for the given verb-relation pair
- the (prior) distribution of synsets participating in the given relation over all verbs in the corpus

$$SPS_{v,r} = \sum_{c \in classes} p(c|v,r) \log \frac{p(c|v,r)}{p(c|r)}$$
(1)

⁶which can be used as a measure of argument recoverability

Distributional Semantic Models (DSMs)⁷

		Len	

itroc	luction	
Goal d	of the study	

recoverability

Related work

The measure

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

⁷Lenci 2018.

Taxonomy-based models need a manually-built lexicon

Introduction Goal of the study

recoverability

Related work

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Taxonomy-based models need a manually-built lexicon

Distributional Semantic Models (DSMs)⁷

DSMs don't! Several models to compute the Selectional Association (SA) between an argument and a verb-relation pair (Pereira, Tishby, and Lee 1993; Erk 2007; Bergsma, Lin, and Goebel 2008; Schulte im Walde et al. 2008; Erk, S. Padó, and U. Padó 2010)

⁷Lenci 2018.

PISA

The basic idea

Cappelli & Lenci

ntroduction Goal of the study Semantic recoverability

DICA

The basic idea

The measure

Weighted models

Experiment

Datasets

Extraction

Embedding

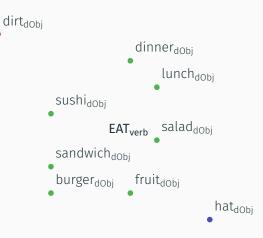
Results

Resnik's SPS

PISA

Conclusions

References



The basic idea

References

the dObjs of to make are very sparse in a vector space

Goal of the stud

Semantic

recoverabilit

Related wo

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Intuition: the vector-based SPS of a given verbrelation pair should be positively correlated with the semantic density of their arguments

PISA: a model of Preference In Selection of Arguments

- Introduction
- Goal of the study
- Semantic
- recoverability

PIS/

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embeddin

Results

Resnik's SPS

PISA

Conclusions

References

Intuition: the vector-based SPS of a given verbrelation pair should be positively correlated with the semantic density of their arguments

PISA: a model of Preference In Selection of Arguments

Implementation: computing the semantic density of the verb-relation pair as the mean pairwise cosine similarity between the arguments of the pair, following Erk 2007; Erk, S. Padó, and U. Padó 2010

The measure

Cappelli & Lenci

Introduction

Goal of the stud

Semantic

recoverability

Related wor

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

We average Erk's SA (in 2) over the *n* arguments of a given verb-relation pair to compute PISA (in 3):

$$SA_{v,r}(a_0) = \sum_{a \in args(v,r)} wt_{v,r}(a) sim(a_0,a)$$
(2)

$$PISA_{v,r} = \frac{1}{n} \sum_{i=1}^{n} SA_{v,r}(a_i)$$
(3)

Cappelli & Lenci

ntroduction Goal of the study Semantic recoverability

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Some arguments are more associated with a given verb-relation pair than others (e.g. *hamburger* is a more typical dObj of *to eat* than *artichoke*) \rightarrow they get different weights⁸

⁸Erk 2007; Erk, S. Padó, and U. Padó 2010.

Weighted models

Cappelli & Lenci

Introduction Goal of the stud Semantic

Related work

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Some arguments are more associated with a given verb-relation pair than others (e.g. *hamburger* is a more typical dObj of *to eat* than *artichoke*) \longrightarrow they get different weights⁸

- UNI assumes a uniform distribution: $wt_{v,r}(a) = 1$
- FRQ is the co-occurrence frequency of a given argument with the verb-relation pair: $wt_{v,r}(a) = freq(a, v, r)$
- IDF assigns higher scores to arguments occurring with fewer verb-relation pairs: $wt_{v,r}(a) = \log \frac{|v,r|}{|v,r:a \in v,r|}$
- LMI is the Local Mutual Information of the argument and a given verb-relation pair: $wt_{v,r}(a) = f(a, v, r) \log_2 \frac{p(a, v, r)}{p(a)p(v, r)}$
- ENT is the entropy of the argument of a given verb-relation pair: $wt_{v,r}(a) = -\sum_{a \in args(v,r)} p(a) \log_2 p(a)$

⁸Erk 2007; Erk, S. Padó, and U. Padó 2010.

Weighted models

Introduction

Goal of the stud

Semantic

recoverabili

Related work

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Unweighted models

Weighted models include ALL the arguments in the calculation (can be a very large number!)

Introduction

Goal of the stu

Somantic

recoverabili

Related wo

PISA

The basic ide

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

Unweighted models

Weighted models include ALL the arguments in the calculation (can be a very large number!)

(?

Is it possible to obtain relevant information considering the most relevant *k* arguments only?

PISA: argument recoverability

Cappelli & Lenci

Weighted models and sorted models

 \mathcal{Q}

Unweighted models

Weighted models include ALL the arguments in the calculation (can be a very large number!)

Is it possible to obtain relevant information considering the most relevant k arguments only?

We created unweighted models

- with only the top/bottom k argument nouns for each verb-relation pair (300 dObjs, 20 Instruments)
- arguments are sorted based on the FRQ, IDF, LMI and ENT weighting functions

Experiment

Datasets

Cappelli & Lenci

Introduction

Goal of the stud

Semantic

recoverability

PISA

The basic ide

The measure

Weighted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

99 transitive verbs (50 recoverable dObj+ 49 non-recov dObj)34 from Resnik 1993, 35 from Levin 1993, 30 high-frequency verbs

Datasets

Cappelli & Lenci

- Introduction
- Goal of the study
- Semantic
- Delete doued
- DISA
- PISA
- The basic ide
- The measure
- Weighted models and sorted models
- Experiment

Datasets

- Extraction
- Embedding
- Results
- Resnik's SPS
- PISA
- Conclusions
- References

- 99 transitive verbs (50 recoverable dObj+ 49 non-recov dObj)34 from Resnik 1993, 35 from Levin 1993, 30 high-frequency verbs
- 173 Instrument verbs (116 recoverable Instr + 57 non-recov Instr) taken from Koenig, Mauner, Bienvenue, and Conklin 2007

Datasets

Cappelli & Lenci

- Introduction
- Goal of the study
- Semantic recoverability
- Dolated work
- PISA
- The basic ide
- The measure
- Weighted models and sorted models
- Experiment

Datasets

- Extraction
- Embedding
- Results
- Resnik's SPS
- PISA
- Conclusions
- References

99 transitive verbs (50 recoverable dObj+ 49 non-recov dObj)34 from Resnik 1993, 35 from Levin 1993, 30 high-frequency verbs

173 Instrument verbs (116 recoverable Instr + 57 non-recov Instr) taken from Koenig, Mauner, Bienvenue, and Conklin 2007

The datasets and the scripts we used to run our model are freely available here on GitHub (courtesy of Ludovica Pannitto)

(5)

- Extraction

- Arguments of verbs extracted from ukWaC⁹, a 2-billion token part-of-speech tagged and lemmatized corpus of English
- extraction of head nouns without determiners and modifiers:
 - a big rusty sword a sword h

Instruments = PPs headed by with, Artifact as a noun argument¹⁰

⁹Ferraresi et al 2008 ¹⁰As defined in WordNet 3.0 (Miller 1995)

Word embeddings

Cappelli & Lenci

ntroduction Goal of the study Semantic

recoverability

PISA

The basic ide

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embeddings

Results

Resnik's SPS

PISA

Conclusions

References

300-dimensional embeddings trained on a concatenation of ukWaC and a 2018-dump of English Wikipedia

Both window-based and syntax-based contexts, different window sizes (2 or 10) for both SVD reduced count-based DSMs and neural embeddings created via word2vec

SVD	w2v	w2vf
synt.c1000	CBOW.w10	SGNS.synt.c1000
synt.c500	CBOW.w2	SGNS.synt.c500
w10	SGNS.w10	SGNS.w10
w2	SGNS.w2	SGNS.w2

Table 1: Tested embedding types (w2v = word2vec; w2vf = word2vecf).

Results

Cappelli & Lenci

Results: Resnik's SPS

Rosnik's

R

Resnik's SPS scores higher for recoverableargument verbs than for non-recoverable argument verbs? (Mann-Whitney U tests)

		mean recov	mean non-recov
iment	dObj verbs	4.27	1.89
	 Instr verbs	4.72	3.60
ddings ts		1	
(s SPS			stats
	dObj verbs	U = 264, n ₁ =	= 50, n ₂ = 49, P < .001
ences	Instr verbs	U = 4646, n ₁ =	= 116, n ₂ = 57, P < .001

Does PISA work?

	Lenci	

Cappelli & Lenci			weighted	top k	bot k
ntroduction		SVD	***	-	-
Goal of the study	UNI	w2v	***		
	ONT			-	-
elated work		w2vf	** (***)	-	-
ISA		SVD	***	** (***)	ns
he basic idea	FRQ	w2v	***	***	ns
he measure /eighted models		w2vf	***	** (***)	ns
		SVD	***	** (ns)	ns (***)
periment	IDF	w2v	***	*** (ns)	***
atasets	101		deale (stealade)		
traction		w2vf	** (***)	ns	ns
		SVD	*** (**)	** (ns)	ns (**)
sults	LMI	w2v	***	* (ns)	*
esnik's SPS	CULT			< - <i>i</i>	
SA		w2vf	*** (*)	* (ns)	* (**)
nclusions		SVD	*** (*)	ns (***)	ns
ferences	ENT	w2v	*** (**)	***	ns
		w2vf	*** (**)	* (ns)	*

Mann-Whitney U p-values (recov vs nonrecov verbs) Whenever transitive and Instrumentverb results are different, former the on the are left and the latter on the right of the same cell

How does PISA compare with Resnik's SPS? (dObj)

Cappelli & Lenci			weighted	top300	bot300
itroduction		SVD	.832***	-	-
ioal of the study	UNI	w2v	.851***	_	_
iemantic ecoverability	ONT				
elated work		w2vf	.250*	-	-
SA		SVD	.854***	.341***	041 ns
he basic idea	FRQ	w2v	.835***	.712***	024 ns
he measure leighted models		w2vf	.743***	368***	090 ns
		SVD	.750***	328***	.211 ns
periment	IDF	w2v	.818***	388***	.457***
	101				
xtraction		w2vf	.256*	154 ns	.164 ns
		SVD	.791***	385***	092 ns
isults Psnik's SPS	LMI	w2v	.711***	135 ns	.129 ns
ISA		w2vf	.667***	092 ns	.091 ns
nclusions		SVD	905***	.163 ns	.111 ns
eferences	ENT	w2v	908***	.579***	.134 ns
		w2vf	911***	.254*	.320**

Spearman correlations between PISA and Resnik scores for transitive verbs.

How does PISA compare with Resnik's SPS? (Instr)

a					
Cappelli & Lenci			weighted	top20	bot20
ntroduction		SVD	.404***	-	-
Goal of the study	UNI	w2v	.244***	_	_
	ONT				
Related work		w2vf	.105 ns	-	-
ISA		SVD	.283***	.481***	025 ns
'he basic idea	FRQ	w2v	.179*	.519***	005 ns
'he measure		w2vf	.127 ns	.326***	.037 ns
		SVD	.384***	.005 ns	.135 ns
(periment	IDF	w2v	.242***	.09 ns	.265***
	IDI				
xtraction		w2vf	.082 ns	.176*	.03 ns
		SVD	.170*	.152*	011 ns
esults esniKis SPS	LMI	w2v	.134 ns	.134 ns	065 ns
ISA		w2vf	.077 ns	.266***	013 ns
onclusions		SVD	885***	.118 ns	.003 ns
References	ENT	w2v	920***	.256***	.088 ns
		w2vf	928***	.031 ns	.334***

Spearman correlations between PISA and Resnik scores for Instrument verbs.

Conclusions

Conclusions

Cappelli & Lenci

Introduction

Goal of the stud

Semantic

recoverabili

Related w

PISA

The basic idea

The measure

Weighted models

Experiment

Datasets

Extraction

Embedding

Results

Resnik's SPS

PISA

Conclusions

References

PISA is as good as SPS but computationally cheaper (no WordNet required!)

Conclusions

Cappelli & Lenci

Introduction

Goal of the stud

Semantic

recoverabili

Related wo

PISA

The basic idea

The measure

Weighted models and sorted models

Experiment

Datasets

Extraction

Embeddings

Results

Resnik's SPS

PISA

Conclusions

References

 \mathcal{Q}

PISA is as good as SPS but computationally cheaper (no WordNet required!)

Which weight is the best? UNI is easier (no weight, no *k* value), ENT is more conservative wrt Resnik, sorted FRQ is best for very large sets of verbs

Conclusions

Cappelli & Lenci

- Introduction
- Goal of the stud
- Semantic
- recoverabilit
- Related wor
- PISA
- The basic idea
- The measure
- Weighted models and sorted models
- Experiment
- Datasets
- Extraction
- Embedding
- Results
- Resnik's SP
- PISA
- Conclusions
- References

PISA is as good as SPS but computationally cheaper (no WordNet required!)

Which weight is the best? UNI is easier (no weight, no *k* value), ENT is more conservative wrt Resnik, sorted FRQ is best for very large sets of verbs

 \mathcal{R}

future studies will predict the recoverability of arguments in other syntactic or semantic relations

Cappelli & Lenci

ĩ

Introduction Goal of the study Semantic recoverability Related work

PISA

The basic ide

The measure

Veighted models ind sorted models

Experiment

Datasets

Extraction

Results

Resnik's S

Conclusions

References

References

Levin, Beth (1993). English Verb Classes and Alternations: A Preliminary Investigation. Chicago: University of Chicago Press. 348 pp. ISBN: 978-0-226-47532-5 978-0-226-47533-2.

Pereira, Fernando, Naftali Tishby, and Lillian Lee (1993). "Distributional Clustering of English Words". In: Proceedings of the 31st Annual Meeting on Association for Computational Linguistics -. The 31st Annual Meeting. Columbus, Ohio: Association for Computational Linguistics, pp. 183–190. DOI: 10.3115/981574.981598. URL:

http://portal.acm.org/citation.cfm?doid=981574.981598 (visited on 2020).

Resnik, Philip (1993). Selection and Information: A Class-Based Approach to Lexical Relationships. IRCS Technical Reports Series. University of Pennsylvania. 177 pp. URL: https://repository.upenn.edu/ircs_reports/200/.

Miller, George A. (Nov. 1995). "WordNet: A Lexical Database for English". In: Communications of the ACM 38.11, pp. 39–41. ISSN: 0001-0782. DOI: 10.1145/219717.219748.

Resnik, Philip (1996). "Selectional Constraints: An Information-Theoretic Model and Its Computational Realization". In: *Cognition* 61.1-2, pp. 127–159. ISSN: 00100277. DOI: 10.1016/S0010-0277(96)00722-6. URL:

https://linkinghub.elsevier.com/retrieve/pii/S0010027796007226
(visited on 2020).

.

1

- Introduction
- Goal of the stu Semantic
- recoverability
- Related work
- PISA
- The basic idea
- The measure
- Weighted models and sorted models
- Experiment
- Datasets
- Extraction
- Results
- Resnik's SPS
 - A.
- References

- Koenig, Jean-Pierre, Gail Mauner, and Breton Bienvenue (2002). "Class Specificity and the Lexical Encoding of Participant Information". In: Brain and Language 81.1-3, pp. 224–235. ISSN: 0093934X. DOI: 10.1006/brln.2001.2519. URL: https://linkinghub.elsevier.com/retrieve/pii/S0093934X01925192 (visited on 2020).
- (Sept. 2003). "Arguments for Adjuncts". en. In: Cognition 89.2, pp. 67–103. ISSN: 00100277. DOI: 10.1016/S0010-0277(03)00082-9.
- Erk, Katrin (2007). "A Simple, Similarity-Based Model for Selectional Preferences". In: p. 8.
- Koenig, Jean-Pierre, Gail Mauner, Breton Bienvenue, and Kathy Conklin (2007). "What with? The Anatomy of a (Proto)-Role". In: Journal of Semantics 25.2, pp. 175–220. ISSN: 0167-5133, 1477-4593. DOI: 10.1093/jos/ffm013. URL:
 - https://academic.oup.com/jos/article-lookup/doi/10.1093/jos/ffm013
 (visited on 2020).
- Bergsma, Shane, Dekang Lin, and Randy Goebel (2008). "Discriminative Learning of Selectional Preference from Unlabeled Text". In: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing. EMNLP 2008. Honolulu, Hawaii: Association for Computational Linguistics, pp. 59–68. DOI: 10.5555/1613715.1613725. URL: https://www.aclweb.org/anthology/D08-1007 (visited on 2020).
- Ferraresi, Adriano et al. (2008). "Introducing and Evaluating Ukwac, a Very Large Web-Derived Corpus of English". In: In Proceedings of the 4th Web as Corpus Workshop (WAC-4.

PISAargument recoverability

Cappelli & Lenci

References

Schulte im Walde, Sabine et al. (2008). "Combining EM Training and the MDL Principle for an Automatic Verb Classification Incorporating Selectional Preferences". In: Proceedings of ACL-08: HLT. ACL-HLT 2008. Columbus, Ohio: Association for Computational Linguistics, pp. 496–504. URL: https://www.aclweb.org/anthology/P08-1057 (visited on 2020).

Erk, Katrin, Sebastian Padó, and Ulrike Padó (2010), "A Flexible, Corpus-Driven Model of Regular and Inverse Selectional Preferences". In: Computational Linguistics 36.4, pp. 723-763. ISSN: 0891-2017, 1530-9312. DOI: 10.1162/coli a 00017. URL: http://www.mitpressjournals.org/doi/10.1162/coli a 00017 (visited on

Lenci, Alessandro (2018). "Distributional Models of Word Meaning". In: Annual Review of Linauistics 4, pp. 151–171.