Gradient grammaticality of the indefinite object drop in Italian: behavioral evidence

Giulia Cappelli¹, Pier Marco Bertinetto¹, Alessandro Lenci²

SyntOp 2022
Syntactic Optionality in Italian
July 4-5, 2022
Virtual Meeting

¹ Scuola Normale Superiore

² University of Pisa

Table of contents

- 1. Introduction
 - 1.1 Goal of the study
 - 1.2 Indefinite dObj drop
 - 1.3 Elements of novelty
- 2. Predictors
 - 2.1 Semantic selectivity
 - 2.2 Binary predictors
- 3. Modeling object drop
 - 3.1 Optimality Theory
 - 3.2 Stochastic OT
 - 3.3 StOT by Medina 2007
- 4. Behavioral experiment
- 4.1 Design
 - 4.2 Stimuli
 - 4.3 Setting
- 5. Results
- 5.1 Exploring the judgments
 - 5.2 Final model
- 6. Conclusions
- 7. Appendix

Introduction

Goal of the study

Cappelli et al.

Introduction

Goal of the study

Indefinite dObj dro

Elements of novelty

redictors

Semantic selectivity

Modeling object

urop

Stochastic OT

Behavioral

experii

Design

Setting

Results

judgments

Final mode

Conclusions

Reference

Modeling the gradient grammaticality of the indefinite object drop construction in Italian using five predictors in a Stochastic Optimality Theoretic model

Appendix

Indefinite object drop

Cappelli et al.

Indefinite dObi drop

¹Fillmore 1986; Mittwoch 1982.

Some transitive verbs allow for the omission of the dObi¹

Definite object drop: contextually recoverable meaning

- (1) I did not finish ϕ_{dObi} .
- \emptyset = the job

Indefinite object drop: meaning recoverable from the semantics of the verb itself

- (2) John is eating ϕ_{dObi} .
- \emptyset = anything edible

Elements of novelty

Cappelli et al.

Introduction

al of the study

Elements of novelty

Prodictor

Semantic selectivit
Binary predictors

Modeling obje

Stochastic OT
StOT by Medina 200

Behavioral

experime

Design

Settin

oculto

Exploring the judgments

Conclusion

Conclusions

Kererence

- experimental data in support of untested theory
- behavioral experiment on Italian
- Stochastic OT model with 5 predictors (Medina 2007 only had three, and focused on English)

Appendix

Predictors

Semantic and aspectual predictors

Cappelli et al.

Introduction

of the study

E-1- JOL: J.

Elements of novel

Predictor

Semantic selectivity

Binary predicto

Modeling obje

атор

CAST has Madies 20

Deberdent

experiment

Docimo

Stimuli

Settin

Results

judgments

Final mode

Conclusions

.....

predictor	type
semantic selectivity	continuous
telicity	binary
perfectivity	binary
iterativity	binary
manner specification	binary

Semantic selectivity

Cappelli et al.

Semantic selectivity

A well-known predictor of object drop²

for any given verb, semantic narrowness of dObjs ~ likelihood of object drop

- (3) John ate ϕ_{dObi} .
- (4) *John made ϕ_{dObi} .

²Glass 2013; Goldberg 2005; Levin 1993; Medina 2007; Resnik 1993, 1996.

Indefinite object drop in Italian

Cappelli et al.

Semantic selectivity

Implementing semantic selectivity

hat_{dObj}

dirt_{dObj} dinner_{dObi} lunch_{dObi} sushi_{dObi} **EAT**_{ver}salad_{dObi} sandwich_{dObi} burger_{dO}fruit_{dObi}

the dObjs of to eat are close together in this semantic space

```
food<sub>dObi</sub>
      dinner<sub>dObi</sub>
                                                    noise<sub>dObi</sub>
effort<sub>dObi</sub>
                          MAKE<sub>verb</sub>money<sub>dObj</sub>
deal<sub>dObi</sub>
                                             bed<sub>dObj</sub>
```

the dObjs of to make are very sparse in this semantic space

Indefinite object drop in Italian

Cappelli et al.

Introduction

milioduction

Goal of the Stur

Elements

Predicto

Semantic selectivity

Binary predicto

Modeling obje

Ontimality Theor

Stochastic OT

Behavioral experiment

Design

Stimuli

Exploring to judgments

Final mode

Conclusion

References

Implementing semantic selectivity

the dObjs of to eat are close together in this semantic space

Intuition: the semantic selectivity of transitive verbs is positively correlated with the semantic density of their dObjs

space

pendix

Cappelli et al.

Semantic selectivity: Behavioral PISA

Implementation: semantic density of a verb as the mean pairwise similarity between a subset of its dObis, gauged via human judgments

in Cappelli and Lenci 2020, we measured it with distributional semantics (pairwise cosine similarity between all the dObjs of verbs)

---- Computational PISA, measure of Preference In Selection of Arguments

25 Italian native speakers judged the similarity of 6 pairs of dObjs (randomly extracted from itWaC) for 30 verbs on a 7-point Likert scale

The Behavioral PISA score for each verb is the average of the ratings relative to all the dObj pairs of that verb (see 1)

$$PISA_{v} = \frac{\sum_{i} r_{v}}{i} \tag{1}$$

Semantic selectivity

Binary predictors

may be omitted (as in 6)³.

syntactically as a dObj (as in 5), while the dObj of an atelic verb

The inherent endpoint of a telic verb has to be realized

- (5) *John killed ϕ_{dObi} .
- (6) John ate ϕ_{dObi} .

³Hopper and Thompson 1980; Medina 2007; Olsen and Resnik 1997.

Perfectivity

Cappelli et al.

Binary predictors

imperfective aspect = ongoing event perfective aspect = event that reached its end

Perfective predicates require overt dObjs (as in 7), while imperfective predicates allow for object drop (as in 8)4.

- (7) ? John painted ϕ_{dObi} .
- (8) John was painting ϕ_{dobi} .

⁴Comrie 1976; Medina 2007.

Iterativity

Cappelli et al.

Binary predictors

⁵Glass 2013, 2020; Ruda 2017.

Iterativity and other types of pluractionality favor the omission of dObjs⁵, as shown in (9) vs (10).

(9) # The Joker killed ϕ_{dObi} . (10) The Joker killed again ϕ_{dObi} .

Manner specification

Cappelli et al.

Binary predictors

⁶Ruda 2017.

If a transitive verb allows for object drop, as in (11), then its synonyms with a manner component block it⁶, as in (12).

(11) John ate ϕ_{dObj} .

(12) *John devoured/nibbled/chewed ϕ_{dObi} .

12

Modeling object drop

Optimality Theory

Cappelli et al.

Optimality Theory

In standard Optimality Theory⁷ the grammaticality of a linguistic structure is defined in terms of well-formedness with respect to a set of conflicting, re-rankable, universal constraints.

fixed constraint ranking: Con. 1 \gg Con. 2 \gg Con. 3

	pioverev[present]	FULL-INT	Subject
	a. EXPL piove	*!	
135.	b. piove		*

	rain _V [present]	Subject	FULL-INT
E%*	a. EXPL rains		*
	b. rains	*!	

binary grammaticality judgments only one optimal candidate (several equally ungrammatical ones)

⁷Grimshaw and Samek-Lodovici 1998; Legendre 2001, 2019; Smolensky, Legendre, and Mivata 1993.

Stochastic Optimality Theory

Introduction

Goal of the study

Predictors

Semantic selectivit Binary predictors

Modeling object drop

Optimality Theo

Stochastic OT

StOT by Medina 20

Behavioral experimen

experimen

Design Stimuli

D. II

Exploring

judgments Final mode

Conclusions

.....

Stochastic OT constraints are on a continuous, numerical scale (making it possible to model gradient grammaticality)

constraint ranking ranges are defined as (normal) probability distributions, and distribution overlap determines the probability of two constraint re-ranking with respect to one another

Stochastic Optimality Theory: constraints drop in Italian Cappelli et al.

*INT ARG (*INTERNAL ARGUMENT STRUCTURE) markedness constraint The output must NOT contain an overt dObi

FAITH ARG (FAITHFULNESS TO ARGUMENT STRUCTURE) faithfulness con. All arguments in the input must be present in the output.

TELIC END (TELIC ENDPOINT) faithfulness con.

Telic predicates must be bounded by a dObj in the output.

PERF CODA (PERFECTIVE CODA) faithfulness con.

Stochastic OT

Perfective predicates must be identified by a dObj in the output.

NON-ITERATIVE ARGUMENT (NON-ITER ARG) NOT IN MEDINA 2007 faithfulness con. Non-iterative predicates must occur with a dObj in the output

MANNER-SPECIFIED ARGUMENT (MAN-SPEC ARG) NOT IN MEDINA 2007 faith. CON. Manner-specified predicates must occur with a dObj in the output

what about semantic selectivity?

Stochastic Optimality Theory: semantic selectivity

Cappelli et al.

Introduction

Goal of the study Indefinite dObj drop

Daniel Lake

Semantic selectivi Binary predictors

Modeling object drop

Stochastic OT

StOT by Medina 2007

Behavioral experiment

Docian

Ctimuli

judgments

Conclusions

References

Semantic selectivity is continuous \longrightarrow bad candidate for constraint-hood (which requires a binary outcome of evaluation)

In Medina 2007's variant of StOT, constraints are re-ranked wrt semantic selectivity (she models it with Resnik 1993's SPS)

Annend

Stochastic Optimality Theory: Medina 2007

Cappelli et al.

Introduction

of the study

Indefinite dObj dr

Elements of

Predictor

Semantic selectivity

Modeling object

Optimality Theory

StOT by Medina 2007

Behavioral

experimen

Design

Setting

esults

Exploring th iudements

Final mode

Conclusions

Reference

Annondiv

1. grammaticality ratings \longrightarrow % of implicit dObj output...

17

Stochastic Optimality Theory: Medina 2007

Goal of the study

Indefinite dObj dro

redictor

Semantic selectivity
Binary predictors

Modeling object

Optimality Theor

Stochastic OT

StOT by Medina 2007

Behavioral experiment

Design

Stimul

Exploring the judgments

Final mode

Conclusions

References

. .

1. grammaticality ratings \longrightarrow % of implicit dObj output...

2. ... used to estimate the relative ranking of *INT ARG... (implicit dObj output whenever *INT ARG is ranked above all the relevant constraints for a given input)

e.g. $p(\text{implicit})_{\text{Telic Imperfective}} = p(*I \gg F, T, P) + p(P \gg *I \gg F, T) = p(*I \gg F) \cdot p(*I \gg T) \cdot p(*I \gg P) + p(*I \gg F) \cdot p(*I \gg T) \cdot [1 - p(*I \gg P)]$

Cappelli et al.

Goal of the study
Indefinite dObj dr

Predictor

Semantic selectivity
Binary predictors

Modeling object drop

Optimality Theory

Stochastic OT

StOT by Medina 2007

experimen

Design

Stimu

Settir

Results

judgments

Conclusion

D . C

110101011000

1. grammaticality ratings \longrightarrow % of implicit dObj output...

2. ... used to estimate the relative ranking of *INT ARG... (implicit dObj output whenever *INT ARG is ranked above all the relevant constraints for a given input)

e.g.
$$p(implicit)_{Telic\ Imperfective} = p(*I \gg F, T, P) + p(P \gg *I \gg F, T) =$$

= $p(*I \gg F) \cdot p(*I \gg T) \cdot p(*I \gg P) + p(*I \gg F) \cdot p(*I \gg T) \cdot [1 - p(*I \gg P)]$

3. ... used to estimate the % of *INT ARG being ranked above each of the other constraints... i.e. $p(*I \gg F), p(*I \gg T), p(*I \gg P)$

Cappelli et al.

StOT by Medina 2007

1. grammaticality ratings \longrightarrow % of implicit dObj output...

2. ... used to estimate the relative ranking of *INT ARG... (implicit dObj output whenever *INT ARG is ranked above all the relevant constraints for a given input)

e.g.
$$p(\text{implicit})_{\text{Telic Imperfective}} = p(*1 \gg F, T, P) + p(P \gg *I \gg F, T) = p(*1 \gg F) \cdot p(*I \gg T) \cdot p(*I \gg P) + p(*I \gg F) \cdot p(*I \gg T) \cdot [1 - p(*I \gg P)]$$

- 3. ... used to estimate the % of *INT ARG being ranked above each of the other constraints... i.e. $p(*1 \gg F)$, $p(*1 \gg T)$, $p(*1 \gg P)$
- 4. ... used to estimate the % of an implicit dObj output for each aspectual type of input (e.g. Telic Perfective, Telic Imperfective...)

Behavioral experiment

Experimental design

within-subject fully crossed 2x2x2 design (each participant sees all the stimuli in random order)

	overt dObj	perfectivity	iterativity
Semantic selectivity	+	+	+
Binary predictors	+	+	_
Modeling object drop	+	_	+
Optimality Theory	•		'
	+	-	-
StOT by Medina 2007	-	+	+
Behavioral experiment	-	+	-
Design	-	-	+

30 transitive verbs (+ 10 intransitive fillers) participate in each of the 8 experimental conditions

(telicity, PISA and mannspec are inherent properties of each verb \longrightarrow not in the experimental design itself)

18

Indefinite object drop in Italian	Stim	uli	
Cappelli et al. Introduction Goal of the study Indefinite dObj drop	(1)	Gianni aveva mangiato un panino di nuovo.	[dObj+, perf+, iter+]
Elements of novelty Predictors	(2)	Gianni aveva mangiato un panino.	[dObj+, perf+, iter-]
Semantic selectivity Binary predictors	(3)	Gianni stava mangiando un panino di nuovo.	[dObj+, perf-, iter+]
Modeling object drop Optimality Theory Stochastic OT	(4)	Gianni stava mangiando un panino.	[dObj+, perf-, iter-]
StOT by Medina 2007 Behavioral experiment	(5)	Gianni aveva mangiato di nuovo.	[dObj-, perf+, iter+]
Design Stimuli Setting	(6)	Gianni aveva mangiato.	[dObj-, perf+, iter-]
Results Exploring the judgments	(7)	Gianni stava mangiando di nuovo.	[dObj-, perf-, iter+]
Final model Conclusions	(8)	Gianni stava mangiando.	[dObj-, perf-, iter-]
References Appendix		the [dObj-] sentences with transitive verbs are	e the target stimuli

Experimental setting

Cappelli et al.

Introduction

Indefinite dObj drop

redictor

Semantic selectivi Binary predictors

Modeling object

Stochastic OT

Behavioral

experimer Dosign

Stimuli Setting

Results

judgments

Conclusions

References

Final model

coded in PsychoPy, uploaded on Pavlovia, run on Prolific

gradient, statistically reliable judgments:

7-point Likert scale (then normalized between 0 and 1) 30 participants (graduate native speakers of Italian)

320 randomized stimuli, one by one training session control stimuli (non-target sentences)

Results

Effect of PISA

Cappelli et al.

Introduction

.....

Indefinite dObj dro

Predictor

11001001

Binary predictor

Modeling object

Optimality Theor

Stochastic OT

StOT by Medina 20

experimer

Design

Design

Setting

Result

Exploring the judgments

Final mod

Conclusions

References

Pearson
$$\rho$$
 = 0.481, p = 0.007

Indefinite object

Effect of each binary predictor

Cappelli et al.

Introduction

Goal of the stud

Elements of no

Semantic selectiv

Modeling object

Optimality Theory
Stochastic OT
StOT by Medica 20

Behavioral experimen

Design

Setting

Result

Exploring the judgments

Final model

COTTCEGGTC

References

iterativity

Joint effect of predictors

Cappelli et al.

Introduction

Goal of the study Indefinite dObj dro

Elements of

Predictor

Semantic selectivit

Binary predicto

Modeling object drop

Optimality Theor

Stochastic OT

Behavioral

experimer

Design

Stimuli

Exploring the

judgments

CONCLUSIONS

Reference:

taken individually, no predictor is decisive

Appendix 23

Joint effect of predictors

Cappelli et al.

Exploring the judgments

taken individually, no predictor is decisive

What does a linear mixed-effects model show?

- the model converges
- · significant (negative) effect of telicity and perfectivity
- · non-significant effect of PISA, iterativity and manner specification

23

Joint effect of predictors

Cappelli et al.

Introduction

Indefinite dObj droj

redictors

Semantic selectivi Binary predictors

Modeling object drop

Optimality Theory
Stochastic OT
StOT by Medina 2007

Behavioral experiment

experimen

...

Setting

Results

Exploring the judgments

Conclusion

References

taken individually, no predictor is decisive

What does a linear mixed-effects model show?

- significant (negative) effect of telicity and perfectivity
- non-significant effect of PISA, iterativity and manner specification

a (Stochastic OT) model of object drop is feasible!

Appendix 23

MODEL OUTPUT: p (*INT ARG » other constraints)

Cappelli et al.

Introduction

Goal of the study

Semantic selectivit

Modeling object drop

Stochastic OT

Behavioral

experime

Stimuli

Results

Evolorin

Final model

Conclusions

Doforoncos

MODEL OUTPUT: probability of implicit object output

Cappelli et al.

Introduction

Goal of the study Indefinite dObj dro

Prodictor

Semantic selectivi Binary predictors

Modeling object drop

Stochastic OT StOT by Medina 20

Behavioral experimen

Design

Stimuli

Result

judgments

Conclusion

References

Conclusions

Cappelli et al.

Introduction

Goal of the study Indefinite dObj drop

Drodictor

Semantic selectivit Binary predictors

Modeling object drop

Stochastic OT
StOT by Medina 2007

Behavioral

Stimuli

Settin

esults

judgments

Final mode

Conclusions

References

Annondiv

- gradient grammaticality of object drop
- StOT model with 5 significant predictors
- quantification of predictors' strength

Conclusions

Cappelli et al.

Introduction

Goal of the study
Indefinite dObj drop

redictor

Semantic selectivi Binary predictors

Modeling object drop

Stochastic OT StOT by Medina 200

Behavioral

Design

Stimuli

Results

judgments

Conclusions

References

- gradient grammaticality of object drop
- StOT model with 5 significant predictors
- quantification of predictors' strength
- comparison with other languages (working on English!)
- · what about Instruments?
- modeling corpus frequencies instead of human judgments

Appendix

Cappelli et al.

Conclusions

Thank you!

slides, data & Python code at giuliacappelli.com

Cappelli et al.

References

References

Cappelli, Giulia and Alessandro Lenci (Dec. 2020). "PISA: A measure of Preference In Selection of Arguments to model verb argument recoverability". In: Proceedings of the Ninth Joint Conference on Lexical and Computational Semantics. Barcelona, Spain (Online): Association for Computational Linguistics, pp. 131-136, URL:

https://www.aclweb.org/anthology/2020.starsem-1.14.

Comrie, Bernard (1976). Aspect: An introduction to the study of verbal aspect and related problems. Vol. 2. Cambridge university press.

Fillmore, Charles (1986). "Pragmatically Controlled Zero Anaphora". In: Proceedings of the Twelfth Annual Meeting of the Berkeley Linguistics Society (1986), Proceedings of the Twelfth Annual Meeting of the Berkeley Linguistics Society (1986), pp. 95–107.

Glass, Lelia (2013). "What Does It Mean for an Implicit Object to Be Recoverable?" en. In: p. 10.

- (Mar. 2020). "Verbs Describing Routines Facilitate Object Omission in English". en. In: Proceedings of the Linguistic Society of America 5.1, p. 44. ISSN: 2473-8689. DOI: 10.3765/plsa.v5i1.4663.URL: https://journals.linguisticsociety.org/ proceedings/index.php/PLSA/article/view/4663 (visited on 2020).
- Goldberg, Adele E. (2005). "Argument Realization: The Role of Constructions, Lexical Semantics and Discourse Factors". en. In: Constructional Approaches to Language. Ed. by Ian-Ola Östman and Miriam Fried, Vol. 3, Amsterdam: John Benjamins Publishing Company, pp. 17-43, ISBN: 978-90-272-1823-0 978-1-58811-579-9 978-90-272-1826-1 978-90-272-9470-8. DOI: 10.1075/cal.3.03gol.

Cappelli et al.

Introduction

Goal of the study
Indefinite dObject

Semantic selectivi

Modeling object drop

Stochastic OT StOT by Medina 200

Behavioral experiment

Stimuli Setting

Exploring the judgments

Conclusion

References

Grimshaw, Jane and Vieri Samek-Lodovici (1998). "Optimal subjects and subject universals". In: Is the best good enough? Optimality and Competition in Syntax. Ed. by Pilar Barbosa et al. MIT Press. pp. 193–219.

Hopper, Paul J. and Sandra A. Thompson (1980). "Transitivity in Grammar and Discourse". In: Language 56.2, p. 251. ISSN: 00978507. DOI: 10.2307/413757. JSTOR: 413757?origin=crossref.

Legendre, Géraldine (2001). "An introduction to Optimality Theory in syntax". In: Optimality-Theoretic Syntax. Ed. by Géraldine Legendre, Jane Grimshaw, and Sten Vikner. MIT Press. Chap. 1, pp. 1–27.

 (2019). "Optimality-Theoretic Syntax". In: Current Approaches to Syntax. A Comparative Handbook. Ed. by András Kertész, Edith Moravcsik, and Csilla Rákosi. De Gruyter Mouton. Chap. 10, pp. 263–290. DOI: 10.1515/9783110540253-010.

Levin, Beth (1993). English Verb Classes and Alternations: A Preliminary Investigation. en. Chicago: University of Chicago Press. 348 pp. ISBN: 978-0-226-47532-5 978-0-226-47533-2.

Medina, Tamara Nicol (2007). "Learning Which Verbs Allow Object Omission: Verb Semantic Selectivity and the Implicit Object Construction". en. Johns Hopkins University.

Mittwoch, Anita (1982). "On the Difference between Eating and Eating Something: Activities versus Accomplishments". In: Linguistic Inquiry 13.1, pp. 113–122. ISSN: 0024-3892. JSTOR: 4178263

Olsen, Mari Broman and Philip Resnik (1997). "Implicit Object Constructions and the (In)Transitivity Continuum". In: In Proceedings of the 33rd Regional Meeting of the Chicago Linguistics Society, pp. 327–336.

Resnik, Philip (1993). Selection and Information: A Class-Based Approach to Lexical Relationships. en. IRCS Technical Reports Series. University of Pennsylvania. 177 pp. URL: https://repository.upenn.edu/ircs_reports/200/.

29

Cappelli et al.

References

Resnik, Philip (Oct. 1996), "Selectional Constraints: An Information-Theoretic Model and Its Computational Realization", en. In: Cognition 61.1-2, pp. 127-159, ISSN: 00100277, DOI: 10.1016/S0010-0277(96)00722-6. URL: https://linkinghub.elsevier.com/retrieve/pii/S0010027796007226

Ruda, Marta (Nov. 2017). On the Syntax of Missing Objects: A Study with Special Reference to English, Polish, and Hungarian. en. Vol. 244. Linguistik Aktuell/Linguistics Today. Amsterdam: John Benjamins Publishing Company. ISBN: 978-90-272-5727-7

978-90-272-6483-1, DOI: 10.1075/la.244, URL:

http://www.ibe-platform.com/content/books/9789027264831 (visited on

Smolensky, Paul, Géraldine Legendre, and Yoshiro Miyata (1993). "Integrating connectionist and symbolic computation for the theory of language". In: Current Science, pp. 381–391.

30

Appendix

Indefinite object

Cappelli et al.

Stochastic Optimality Theory: Medina 2007

LOGIC ↓

Goal of the study Indefinite dObj drop Elements of novelty

redictors

Semantic selectivit Binary predictors

Modeling object drop

Stochastic OT
StOT by Medina 200

Behavioral experiment

Dosign

Stimuli Setting

Results

judgments Final mod

Conclusions

Roforoncos

f(SPS) = probability of *INT ARG dominating each constraint

knowing the relative % of each constraint orderings, estimate the % of *INT ARG dominating each constraint

these outputs determine the relative % of each of all the possible constraint orderings relative % of each of the possible constraint orderings can be estimated via the relative % of impl object output

these relative % determine the relative % (and thus grammaticality) of the impl object output for a given input grammaticality judgments = relative % of impl object output for a given input

PROCEDURE ↑

Appendix

Cappelli et al.

Goal of the study

Elements of nov

Predicto

Semantic selectivi Binary predictors

Modeling object drop

Stochastic OT

StOT by Medina 20

Behavioral experiment

Docimo

Stimuli

. .

Exploring th judgments

Final model

Conclusions

References

the grammaticality of the indefinite object drop is quantified via an acceptability judgment survey

these ratings are equated to the probability of an implicit object output for a given input

Cappelli et al.

the probability of the possible constraint orderings can be estimated via the % of an implicit object output

In Medina 2007.

$$p(\mathsf{implicit})_{\mathsf{Telic\ Perfective}} = p(*l \gg F, T, P)$$

$$p(\mathsf{implicit})_{\mathsf{Telic\ Imperfective}} = p(*l \gg F, T, P) + p(P \gg *l \gg F, T)$$

$$p(\mathsf{implicit})_{\mathsf{Atelic\ Perfective}} = p(*l \gg F, T, P) + p(T \gg *l \gg F, P)$$

$$p(\mathsf{implicit})_{\mathsf{Atelic\ Imperfective}} = p(*l \gg F, T, P) + p(T \gg *l \gg F, P) + p(P \gg *l \gg F, T) + p(T, P \gg *l \gg F)$$

e.g. p(implicit)_{Telic Perfective} = judgments for telic perfective stimuli

Cappelli et al.

... which means that the probabilities are computed as follows, considering the relative ranking of *Int Arg with respect to the other three constraints as independent computations

$$p(\text{implicit})_{\text{Telic Perfective}} = p(*l \gg F) \cdot p(*l \gg T) \cdot p(*l \gg P)$$
 (2)

$$p(\text{implicit})_{\text{Telic Imperfective}} = p(*l \gg F) \cdot p(*l \gg T) \cdot p(*l \gg P) +$$

$$+ p(*l \gg F) \cdot p(*l \gg T) \cdot [1 - p(*l \gg P)]$$
(3)

$$p(\text{implicit})_{\text{Atelic Perfective}} = p(*l \gg F) \cdot p(*l \gg T) \cdot p(*l \gg P) +$$

$$+ p(*l \gg F) \cdot [1 - p(*l \gg T)] \cdot p(*l \gg P) \tag{4}$$

$$p(\text{implicit})_{\text{Atelic Imperfective}} = p(*l \gg F) \cdot p(*l \gg T) \cdot p(*l \gg P) +$$

$$+ p(*l \gg F) \cdot [1 - p(*l \gg T)] \cdot p(*l \gg P) +$$

$$+p(*l\gg F)\cdot p(*l\gg T)\cdot [1-p(*l\gg P)]+$$

$$+ p(*I \gg F) \cdot [1 - p(*I \gg T)] \cdot [1 - p(*I \gg P)]$$
 (5)

Cappelli et al.

 $p(*INT ARG \gg FAITH ARG) = \frac{\delta_1 - \gamma_1}{SPS_{max} - SPS_{min}} \cdot (SPS_i - SPS_{min}) + \gamma_1$

$$p(*INT ARG \gg TELIC END) = \frac{\delta_2 - \gamma_2}{SPS_{max} - SPS_{min}} \cdot (SPS_i - SPS_{min}) + \gamma_2$$
(7)

$$p(*INT ARG \gg PERF CODA) = \frac{\delta_3 - \gamma_3}{SPS_{max} - SPS_{min}} \cdot (SPS_i - SPS_{min}) + \gamma_3$$
(8)

These functions take positive values in a range of possible values depending on the verbs' semantic selectivity.

StOT model: computation

Cappelli et al.

Introduction

Indefinite dObj dre

Predictor

Semantic selectivit Binary predictors

Modeling object

Stochastic OT
StOT by Medina 2007

Behavioral

experimen

Design

B . . . U .

Exploring the judgments

Conclusi

_ .

eference

The unknown parameters (gammas and deltas) can be estimated by optimizing an overall function⁸ so that:

- the sum-squared error between the predictions of the model and the actual grammaticality judgments are minimized
- · gammas and deltas fall between 0 and 1

Thanks to these constraints, the model outputs predicted grammaticality values in the 0-1 probability range.

⁸Medina 2007 used Excel Solver, I used the *curve_fit()* method inside the *optimize* function of the Python library SciPy